Algebraic Proof...
From the table above, we might (deduce?) "recognise a pattern",
(...that in "generalised terms", may be reduced to a claim that...)
any fraction of the form "1/n" can be rewritten as the sum of two
smaller fractions, "1/(n+1)+1/((n*n)+n)", or in further simplified
terms, as (1/n) == (1/(n+1)+1/(n*(n+1))) , ...
... where "n" is any "whole number" greater than "zero" ...
((1/n)) = 1/(n+1)+1/((n*n)+n) = n/((n*n)+n)+1/((n*n)+n)
= (n+1)/((n*n)+n)
or ...
((1/n)) = 1/(n+1)+1/(n*(n+1)) = n/(n*(n+1))+1/(n*(n+1))
= (n+1)/(n*(n+1))
= (1/n)*( (n+1) / (n+1) )
─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
/** ... /
// JavaScript test code ... Tue Jun 07 2022 00:02:34 GMT+0100 (British Summer Time)
const n = window.parseInt(Math.random( )*(Number.MAX_SAFE_INTEGER/1)); window.alert([1/n==1/(n+1)+1/(n*(n+1)) , n , 1/n , 1/(n+1)+1/(n*(n+1)) ]);
// Note to self:
// ... frequent false results are likely due to digital-floating-point precision errors ... try reducing Number.MAX_SAFE_INTEGER by 1/2,1/3 ... ?;
/**/